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Purpose. To point out the importance of heterogeneity in drug distribution processes and develop a
noncompartmental approach for the description of the distribution of drug in the body.

Methods. A dichotomous branching network of vessels for the arterial tree connected to a similar venous
network was used to describe the heterogeneity of blood flow in the successive generations of the networks.
The relevant kinetics of drug distribution in the well perfused and the deep tissues was considered to
take place under well stirred (homogeneous) and understirred (heterogeneous) conditions, respectively.
Results. A “homogeneous model” with classical kinetics (which is mathematically equivalent with the
one-compartment model) was developed for these drugs which are confined to well perfused (“well
stirred”) spaces. A “heterogeneous model” was proposed for the drugs reaching understirred spaces using
a decreasing with time rate coefficient (fractal kinetics) to model the diffusion of drug under heterogeneous
conditions. The analysis of the model equations revealed that the homogeneous model can be considered
as a special case of the heterogeneous model. Concentration-time plots of multiexponential type were
generated using the heterogeneous model equation. The empirically used power functions of time for the
analysis of calcium clearance curves, were found to be similar to the equation adhering to the heterogeneous
model. Fittings comparable to multiexponential models were obtained when the heterogeneous model
equation with only one adjustable parameter was applied to six sets of long period calcium data.
Conclusions. The heterogeneous processes of drug distribution in the body can obey the principles of
fractal kinetics. Calcium clearance curves were analysed with the heterogeneous model. The validity of
multicompartmental models which are based on the concept of homogeneity to describe drug distribution
should be reconsidered.

KEY WORDS: fractal; fractal kinetics; calcium Kkinetics; heterogeneity; drug distribution; phar-
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Pharmacokinetics has been based primarily on the concept
of homogeneity. The simplest model, the one-compartment
model, relies on the assumption of an instantaneous distribution
equilibrium reached after drug administration. In essence, the
drug is considered to be distributed uniformly throughout the
whole organism. Since the body is composed of a heterogeneous
group of tissues, more complicated models (multicompartment
models) in which various tissues with hypothetically similar
distribution equilibration properties are grouped together, have
been conceived (1, 2). Again, homogeneity in the drug concen-
tration for each one of the compartments of the model is the
prevailing concept.

In order to overcome some of the drawbacks of the com-
partment models, attempts were made to define the disposition
patterns of drugs in terms of physiological principles. Thus,
the distribution of drug was considered to be dependent on the
perfusion of the body tissues and the physiologic pharmacoki-
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netic models were developed (3). Once again, a homogeneous
concentration-time profile is conceived for each one of the
“organs or tissues” of the model during the time course of drug
in the body.

All these models for the distribution of drugs are based
on the concept of homogeneous, well stirred® compartments and
are described mathematically by systems of linear differential
equations which when solved result in the well known sums-
of-exponentials concentration-time curves. The simplified
notion of the homogeneous compartment has been questioned
in literature several times and attempts have been made to
describe more realistically the heterogeneous character of drug
distribution in the body (4-7). Wise (4) reported a great number
of concentration-time curves which can be described by nega-
tive power law models. Although his approach is empirical,
the fits of these models to the data were comparable or even
better than the sums of exponential model. Additionally, Wise
and Borsboom (5) used power functions of time to describe

3 Throughout this work the concept of stirring is related exclusively
to the topological constraints posed by the structure and not to external
sources of mixing.
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amiodarone and calcium clearance curves. Another approach
based on semi-Markov process models with Erlang transit times
has been used for systems with nonhomogeneous “poorly stirred
compartments”(6). Moreover, a non-Markovian model has been
used to describe the complex calcium kinetics in blood plasma
(7). However, these two approaches (6, 7) despite their stochas-
tic character maintain the compartmental notion.

This paper considers a novel approach for the description
of the distribution of drug in the body. The approach used, relies
on fractal vascular networks models for flow heterogeneity (8,
9). This form of the microvascular network is linked with the
local blood flow (8, 9); hence, homogeneous and heterogeneous
conditions can be conceived for well stirred or understirred
spaces, respectively. The analysis of models developed is based
on classical kinetics e.g first-order for well stirred spaces and
fractal kinetics (10, 11) for “poorly stirred” heterogeneous
spaces.

THEORY

Standard Compartmental Modeling

In classical kinetics the interchanges of drug between com-
partments obey first-order kinetics and complete and instanta-
neous mixing within each compartment is assumed. The
mathematical expression for the concentration(C)-time(t) curve
in any compartment has the familiar form of the sums of
exponentials:

C= E;Aie')‘i' (l)

The key principle of compartmental modeling is the homogene-
ity throughout each of the compartments of the model.

Power Functions of Time

Several reports in literature (4, 7, 12) have shown that
radiocalcium clearance curves from plasma can be described
by the expression:

C ~ (A/te™ @)

Calcium concentration data collected up to 200 h are nicely
modeled (7) by Eq. 2 while the initial data up to 10 h can be
modeled by the simplified function

C ~ A 3

It should be noted that Egs. 2 and 3 are not valid for t = 0
(7). Eq. 2 has been also shown to describe adequately a large
number of clearance curves of various drugs (4). Besides, amio-
darone plasma concentration data collected over a long period
of time (50 days) were described by two power functions of
time (5). In this article (5), radiocalcium curves exhibited the
same behaviour and they were surprisingly like the amiodar-
one curves.

Microvascular Fractal Network

Mandelbrot (13, 14) was the first to describe and analyse
the structured irregularity of the natural world. He coined the
term fractal to denote structures in space and processes in time
with multiple scale properties. The wide importance of fractals
in physiology relies on the need for an understanding of many
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fractal objects and processes found in living things (9, 15, 16).
The concept of fractals is new in the field of pharmaceutical
sciences (17).

According to Mandelbrot (14) fractal bifurcating networks
mimic the vascular tree. Based on this observation, van Beek
et al (8) developed dichotomous branching fractal network mod-
els to explain the regional myocardium flow heterogeneity. Even
though the developed models give overly simple descriptions of
the fractal network, they proved to be adequate to describe the
dependence of the relative dispersion of the flow distribution
on the size of the supplied region of myocardium (8). These
findings allow someone to infer that such fractal approaches
would be useful in describing other systems with heterogeneous
flow distributions.

Building on the work of van Beek et al (8) a dichotomous
branching network of vessels representing the arterial tree con-
nected to a similar venous network can be used to describe the
distribution of drug in the body, Fig. 1. The key feature of the
network is the continuous bifurcation of the parent vessels for
many generations of branching. Each parent vessel generates
two daughter branches of different sizes in which fractions g;
and 1-g; of the flow entering the bifurcation are distributed to
daughter branches. Thus, a distribution of flow is created down
the vascular tree. Van Beek et al (8) examined different schemes
for determining g; from the experimental data of baboons and
sheep myocardium. Regardless of the scheme considered (8),
the average flow in the vessels of the ith generation is equal
to (1/2)'F, where F is the flow at the origin of the network.
This is an important finding for our purposes since it signifies
the exponential reduction of flow in all successive generations
down the vascular tree. For example, the flow after only 8
generations becomes ~0.004F,,. It is also interesting to note
that at the terminal arteriolar endings of the heart, “arterioral
bursts” or “flowers” are formed which feed a multitude of
capillaries (9). The latter are not a part of the network but may
be regarded as a swamp.

Other studies (18, 19) have also shown that the dimensions
for vessel radii, branch length and wall thickness in the mesen-
teric and renal arterial beds have fractal properties. Thus, the
general pattern of the distribution of flow can be also assumed
for the complete vascular system of Fig.1l envisaged for the
distribution of drugs in the body. The flows will diverge in the
arterial tree and converge in the venous tree while at the ends
of the arterial and venular ends of networks the local flow will
be slow and heterogeneous.

Homogeneous-heterogeneous Distribution Models

In the light of the networks and flow considerations, the
distribution of drugs in the body can be classified into two
broad categories. The distribution process of the drugs of the
first category takes place under homogencous (“well stirred”)
conditions. For the second category of drugs a significant part
of the distribution process operates under heterogeneous
(“understirred”) conditions. From a kinetic viewpoint, the distri-
bution of the first category of drugs can be described with
classical kinetics while fractal kinetics (10, 11) should be
applied only for the heterogeneous part of the distribution pro-
cesses of the second category of drugs. Drugs of the first cate-
gory have physicochemical properties and permeability
characteristics which allow them to leave the arteriole network
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Fig. 1. A complete vascular dichotomous network used to describe the distribution o
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frdrug in the body. F,

is the total blood flow. The black circle represents the drug. (a) The distribution of drug in well perfused
tissues takes place under homogeneous (well stirred) conditions. (b) The distribution of drug in deep tissues
takes place under heterogeneous (understirred) conditions. For the sake of clarity the system is oversimplified;
in reality, the arterial and venular networks are scattered in three-dimensional space while venules travel

with arterioles through much of the network.

and diffuse to the adjacent tissues under conditions of flow
which ensure complete mixing, Fig la. These drugs reach only
the well perfused tissues and return rapidly to the venular
draining network. The disposition of this category of drugs can
be modeled with the “homogeneous model” which is identical
mathematically with what we call “one compartment model”.
Obviously, the drug molecules obeying the homogeneous model
permeate the walls of vessels prior to their arrival at the hugely
dense ending of networks; thus, the upper part of the vascular
system and the well perfused adjacent tissues comprise a homo-
geneous well stirred “compartment”.

Based on the considerations of flow in the network, it is
reasonable to argue that in close proximity with the terminal
arterioral ending, the blood flow and drug diffusion in the adja-
cent deep tissues will be so slow that the principle of the well
mixed system will not hold any more. Consequently, if a large
portion of drug is still confined in the arterial system near its
ending, the drug diffusion in the deep tissues will operate under
heterogeneous (understirred) conditions, Fig 1b. If such condi-
tions prevail, the rate constant of drug movenent in the tissues
is not linearly proportional to the diffusion coefficient (D) of the
drug (10, 11). A better description of transport limitations can
be based on the principles of diffusion in disordered media (20).

It has been shown (21) that in disordered media the value
of the first-order kinetic rate constant is related to the geometry
of the medium. In these media the diffusional propagation is
hindered by its geometrical heterogeneity which can be
expressed in terms of the fractal and fracton dimensions. For
our purposes, the propagation of the drug’s diffusion front in
the heterogeneous space of tissues can be viewed as a diffusion
process in a disordered medium. Both the diffusion coefficient
of drug and the kinetic rate constant are dependent on the
position of the radial coordinate of the diffusion front and
therefore both parameters are time dependent. In these lower
dimensional systems, diffusion is inhibited because molecules
can not move in all directions and constrained to locally avail-

able sites. The result is what Kopelman has termed “fractal
kinetics” where the rate constant depends on time (10, 11). In
classical kinetics which is applied to homogeneous solutions
(well stirred media), the rate constant is independent of time.
In understirred media, where processes take place in a low
dimensional space, the rate constant is time-dependent at all
times (10, 11). For these heterogeneous processes, the time
dependency of the rate coefficient, k, is expressed by

k=kt™ @a>1 @

where k; is a constant with units (time)*""! and & is a pure
number with values in the range 0 < h = 1. According to
Kopelman (10, 11), k depends on time since 4 # 0 in nonhomo-
geneous spaces; however, in three dimensional homogeneous
spaces i = 0 and therefore k = k; i.e classical kinetics prevail
and the rate constant does not depend on time. The minus sign
in Equation 1 is used to mimic the decrease of the rate coeffi-
cient, k, with time as the walker (drug) has progressively less
successful visits (10, 11). However, rate coefficients which
monotonically increase with time have been also used (22). In
recent years fractal kinetics has been applied in various fields
of research (22-28).

Transport limitations of drug in tissues have been dealt with
so far with the flow or membrane limited physiological models
(3) which maintain compartmental and homogeneity concepts. In
this work, albeit not specifying transport limitations, the approach
developed relies on the more realistic heterogeneous conditions
of drug diffusion. Thus, for the model depicted in Fig.1b, the
diffusion of drug can become partially constrained by either the
walls of the vessels at the arterial and venular endings or the
phase boundaries (e.g interstitial fluid and cell membrane, liquid-
solid as in the case of blood and bone). Hence, the rate “constant”
of drug diffusion in the tissues, k4, under these heterogeneous
conditions, will exhibit time dependency and will in reality be
a coefficient. Plausibly, this dependency is associated with the
spatial arrangement and the composition of the heterogeneous
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space reached by the drug. In this study, a decreasing distribution
rate coefficient, k; was postulated:

kg = kt™P 0=<h=1l t>1 &)

Eq. 5 has the classical form of Eq. 4 for fractal kinetics introduced
by Kopelman (10, 11). The above considerations for the drugs
following the heterogeneous route of Fig. 1b were used for the
formulation of the “heterogeneous model” depicted in Fig. 2.
This model describes the disposition of the second category of
drugs after time 7 which corresponds to the time required for
the establishment of heterogeneous conditions i.e the drug has
reached the heterogeneous spaces. Prior to time 7, a portion* of
the administered dose is eliminated from the body and the kinetics
of drug from time zero to time T can be described with the
homogeneous model which is mathematically equivalent to the
one-compartment model since homogeneity is again the prevail-
ing concept and classical kinetics apply, i.e.,

(dC/dt) = —kouC O=t=r1 ©)

After time T, the slow diffusion of drug in the heterogeneous
space becomes rate limiting to elimination, Fig. 2, and the
kinetics is governed by the rate coefficient ky:

(dC/dt) = —k,C =10 )

Substituting k4 from Eq. 5 into Eq. 7 and integrating the resulting
equation from t = T to t = t, one has

JC % = -k Jt tdt
C, T
or

InC - InC, = —k(t"" — v1™0/(1 — h)
which can be written in exponential form

C =C,exp — [k ('™ — 7170y - k)] ®)

where C, is the drug concentration in plasma at time T.

UNDERSTIRRED

3
SPACES

Kout
Fig. 2. The heterogeneous model. The drug diffuses to deep (under-
stirred) spaces where heterogeneous (understirred) conditions are pre-
vailing. The wavy arrow denotes the diffusion of drug in the
heterogeneous spaces and k is the coefficient of fractal kinetics applied;
Kou 18 the elimination rate constant.

4 This portion depends on the amount of drug which permeates the upper
part of the arterial network and the drug’s elimination rate constant.
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RESULTS AND DISCUSSION

The two routes of drug movement in the tissues shown in
Fig. 1 provide a pictorial view of the spatial arrangement of
the well perfused and the deep tissues as well as an explanation
for the kinetic differences (classical versus fractal) of the two
categories of drugs. For example, if the average spatial location
of the well perfused and the deep tissues is in the neighbourhood
of the 8th and 15th bifurcation of the model in Fig. 1, respec-
tively, a ~100 relative reduction of the mean blood flow can
be estimated from the equation (1/2)'F; used by van Beek et
al (8) for the blood flow in the dichotomous fractal network
of myocardium. Similar magnitudes of relative blood flows
have been used in physiological modeling (29).

The homogeneous model can also be considered as a lim-
iting case of the heterogeneous model since for # = 0 in Eq.
5 the time dependency of the rate constant kj is abolished. This
can also be seen graphically in Fig. 3A where concentration
versus time plots are presented for various values of the expo-
nent 4 in Eq 8. The curves of Fig. 3A demonstrate that the
typical monoexponential decline of concentration-time plots is
observed as the value of h approaches zero. On the contrary,
the shape of the curves resembles the polyexponential type of
curves when the values of & deviate considerably from zero,
Fig. 3A. In parallel, the corresponding log-log plots of the same
data are concaving downward curves with decreasing curvature
as the value of k deviates from zero, Fig. 3B. This form of
log-log plots has also been generated by Wise (4) using the
empirical Egs. 2 and 3 and is the focal point for the consideration
of homogeneity and heterogeneity of distribution in previous
studies (4, 5). Recently, the same form. of log-log plots in
outflow concentration-time curves was observed after i.v bolus
injection of '>O-water into the arterial inflow of blood perfused
rabbit hearts (30). According to the authors, these results were
obtained since the vascular structures, the regional flow and
the kinetics are all fractal (30).

Fig. 4 illustrates the properties of the fractal model when
compared to multiexponential models using simulated data. The
good fittings of multiexponentials to the three sets of theoretical
data generated from Eq. 8, demonstrate that multiexponentials
can describe clearance curves obeying the fractal model, Fig.
4. These findings are in full agreement with previous observa-
tions (5) in regard to the relevance of sums of exponentials and
power functions of time.

Applications to Calcium Data

The analysis of calcium data (4, 5, 7) is routinely based
on the empirical Egs. 2 and 3. In fact, calcium is the classical
example of “anomalous” kinetics and therefore heterogeneous
Kinetics is suspected (4, 5). A starting point for the consideration
of calcium kinetics is Eq. 2; taking the derivative of Eq. 2 in
respect to time:

(dC/dt)

—Ay(EtT e — Aa(t™Me ™ O]
= —(A/Me Y a + yt7h)

which can be written more conveniently using Eq. 2:
(dC/dt) = —(o + yt™HC 10)

This treatment reveals that the derivation of the empirical Eq.2
for calcium kinetics can be based on Eq. 10 which adhers to
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Fig. 3. (A) Concentration-time plots generated from Eq. 8 using C, = 100, k, = 0.5, 7+ = 2, and
various values of h shown. (B) The corresponding log-log plots.

a model with i.v bolus administration and two non-reversible
pathways of elimination, the first of which (the term a) obeys
first-order kinetics while the second (yt™!) has the features of
classical fractal-like kinetics.

In a similar manner one can also prove that Eq. 3 can be

derived from Eq. 11:
(dC/dt) = —yt™IC (1

The only difference between Eq. 11 and Eq. 7 lies on the

exponent of time (see Eq. 5). These observations allow someone
to infer that the empiricaly used Eqs. 2 and 3 for the analysis
of calcium clearance curves, are relevant to Egs. 6 and 7 and
the accompanying kinetic considerations of this study.
According to the theory developed, the kinetics of calcium
flow out from plasma to urine is first-order when most of the
calcium ions are still in the upper part of the vascular system.
Subsequently, and after this initial phase, the diffusion of cal-
cium in the deep tissues and its reversible binding to bone
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2.0
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Fig. 4. Exponential fits to theoretical data generated from Eq. 8 using:
(A)C, = 50,k, = 0.6, 7 = 1.5, and h = 0.2; the fitted line corresponds
to the equation:
C = 59.56exp(—0.903t) + 62.75exp(—0.395t)
+ 18.78exp(—4.306t), * = 1.0

(B)C, = 100,k, = 0.6, 7 = 1.5, and h = 0.6; the fitted line corresponds
to the equation:
C = 145.18exp(—0.630t) + 52.86exp(—0.136t)

+ 385.60exp(—4.485t), r* = 0.99999.
(C)C, =250,k, = 0.1, 7 = 1.5, and h = 0.4; the fitted line corresponds
to the equation:

C = 56.85exp(—0.821t) + 248.88exp(—0.045¢t), r* = 0.99999.

The fittings were performed with the program MINSQ (31).

9.0 12.0
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Table I Personal Details of Subjects Provided by Dr. Goans

Subject Age-Gender-Status

1 33-Female-Normal

2A° 28-Female-Third semester of pregnancy
2B“ 28-Female-Post-partum lactation

2C 28-Female-Normal

3 5.9-Child-Normal

4 26-Male-Normal

¢ Subject 2 is the same in three different experiments.
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Fig. 6. The fit of Eq. 8 to the concentration-time data of calcium for
the subject 1. The fitting was performed with the program MINSQ (31).
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Fig. 5. Semilogarithmic plot of the initial data points of six subjects in Table I. Key
(subject): ®1, 02A, A2B, X2C, *3, @4.

obeys fractal kinetics (Eq. 8) and progressively becomes rate
limiting to elimination. The fractal formalism in calcium clear-
ance can be associated with the hydrodynamics prevailing in
the tissues and the reaction space, i.e., the uptake of calcium
from the bone and its subsequent dissociation can be
heterogeneous.

In order to verify the fitting of Eq. 8 to experimental
results, the methodology was applied to six sets of long period

i.v. calcium data, Table I, provided by Dr. R. E. Goans from
the Oak Ridge Institute for Science and Education, USA. Firstly,
a semilogarithmic plot was constructed using the data with t
< 4h, Fig. 5. Linear regression analysis of the early data points
with t = 0.5h resulted in the following half-life (In2/slope)
values: 0.72, 0.62, 0.52, 0.71, 1.48, and 1.13 h for subjects 1A,
2A, 2B, 2C, 3, and 4, respectively. Females (subjects 1A, 2A,
2B, and 2C) exhibit a remarkably consistent initial “homoge-
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Table IL. Parameter Estimates = SD for the Curve Fitting of Eq. 8 to the Data of Table I Along with the Multiexponential Fitted Equations to
the Same Data

Subject N¢ C, h K,(h)r! 2 MSC?
1 72 502.26 * 6.48 0.647 = 0.0t1 0.150 = 0.006 0.998 5.51
C = 3844 + 1538exp(—0.002 = 0.0007t) + 293.57 * 8.46exp(—0.116 + 0.007t) + 178.31 = 12.03exp(—0.010 = 0.001t) 0.998 5.71
2A 75 240.32 £ 2.48 0.546 * 0.011 0.128 + 0.005 0.998 6.06
C = 52.80 = 3.14exp(—0.007 = 0.0003t) + 173.28 = 13.67exp(—0.562 = 0.042t) + 126.81 * 2.73exp(—0.034 = 0.0011) 0.999 7.02
2B 66 28365 £ 384 0.560 = 0.014 0.122 * 0.006 0.998 5.62
C =96.08 £ 6.19exp(—0.007 = 0.0003t) + 143.19 * 16.47exp(—0.417 = 0.073t) + 120.54 = 6.67exp(—0.043 = 0.005t) 0.998 6.01
2C 109 253.08 * 4.56 0.542 = 0.017 0.086 * 0.006 0.993 443
C = 71.85 = 12.53exp(—0.004 = 0.0004t) + 131.23 = 9.40exp(—0.188 = 0.0291) + 90.74 * 10.06exp(—0.015 = 0.003t) 0.995 4,78
3 30 196.13 = 745 0.607 * 0.041 0.239 * 0.026 0.994 444
= 134.35 * 10.64exp(—0.161 = 0.026t) + 63.93 = 10.14exp(—0.021 = 0.003¢t) 0.992 4.13
4 8 78.28 * 4.14 0.831 = 0.079 0.219 = 0.045 0.998 3.91
C = 47.22 % 3.88exp(—0.283 = 0.042t) + 41.48 = 1.52exp(—0.009 = 0.0007t) 0.999 5.20

“ Number of observations.
5 Model Selection Criterion (31).

neous” elimination phase with a mean half-life 0.64+0.09h
while subjects 3 (child) and 4 (male) have higher half-lives
i.e., 1.48 and 1.13h, respectively. These findings reveal an
initial rapid “homogeneously” declining phase for all subjects.
However, the visual inspection of the semilogarithmic plots in
Fig. 5 indicates that this phase ceases between 0.5 and 1.0h
for the majority of subjects and certainly does not last longer
than 2.0h for all subjects. Based on these observations, all data
points with t = 2.0h for all subjects were considered to obey
the heterogeneous model while the commencement of fractal
kinetics was chosen to be 1.0h as the most reasonable estimate
for all subjects studied. Accordingly, the value of 7 in Eq. 8
was adjusted to 1.0h and Eq. 8 was fitted to all sets of experimen-
tal data utilising all data points with t > 1h. A representative
example of fitting is shown in Fig. 6. The fractal approach
reveals a pattern in a whole set of curves and simultaneously
provides physiologically meaningful estimates for the model
parameters, Table II. Table II lists also the nonlinear least
squares regression equations of exponential fittings to the same
sets of data. Both approaches gave very good fittings. According
to the values of the model selection criterion (31), Table II, the
multiexponentials came out slightly better than the fractal model
in the majority of cases. However, three as well as two compart-
ment models were utilised to describe calcium kinetics in the
subjects studied with four and six estimated parameters, respec-
tively. In contrast, using the fractal model all sets of curves
were fitted with three estimated parameters.

A more sophisticated analysis could be also applied for
the analysis of calcium data using separate functions for each
phase combined with the concept of continuity (5). In such a
case, five parameters (Ko, 7, ki, &, and C, the plasma concentra-
tion at time zero) define the curve and some of them might
need to be regarded as adjustable parameters while fitting irreg-
ularities can be encountered. Instead, the approach chosen rely-
ing on simple computation requires only one adjustable
parameter (7). It can be anticipated, however, that this first
application of fractal kinetics to drug distribution will be further
developed in future studies depending on a drug’s pharmacoki-
netic characteristics.

CONCLUSIONS

Based on the notion of microvascular fractal networks, a
physiologically realistic model was developed for the descrip-
tion of drug distribution in the body. Recent studies indicate
that many in vivo processes can be fractal (24, 26, 28, 30). In
accord with these recent findings and in the same vein with
previous studies (4, 5, 7), the present work strongly supports
the heterogeneous character of drug disribution. The results of
the present study substantiate the view that the application of
fractal kinetics for the diffusion of drug in the heterogeneous
spaces of the body provides a theoretical justification for the
empirical mathematical relationships used for a long time to
describe calcium clearance curves (4, 5). Finally, it should be
emphasized that multiexponentials (Eq. 1) can be nicely fitted
to data generated from Eq. 8 as shown in Fig. 4. This is again
an indication as well as a warning that actual heterogeneous
processes can be conceived and explained in terms of the
existing theory of the homogeneous compartments.
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